Red neuronal-HMA

0
(0)
※ Neural red-casco de transferencia común ※ ☛ Jurik filtros/suavizado y clases personalizadas de ma por Mladen ☛ más alta y mayor formulación (más alto & APB de cálculo) ☛ hace uso de Hull mA (por Allan Hull) sin embargo, este es una variación de baja lag a cero lag ☛ más grande de nosotros e con los volúmenes en el indicador fundamental de la carta-beneficioso para el indicador fijó apagado/substituye el principio transitorio del movimiento de redes de los nervios: la comunidad de los nervios es un maniquí ajustable de salidas como capacidades de entradas. Consiste en un número de capas:
  1. Escriba la capa, que consiste en introducir conocimiento
  2. capa oculta, que consiste en procesar nodos referidos como neuronas
  3. capa de la salida, que consiste en 1 o un número de neuronas, que salidas son las salidas de la comunidad.

Todos los nodos de las capas contiguas están interconectados. Estas conexiones se denominan sinapsis. Cada sinapsis tiene un coeficiente de escalamiento asignado, por el cual la información propagada por la sinapsis se multiplica. Estos coeficientes de escala se denominan pesos (w [나] [j] [k]). En una red de nervios de avance (FFNN) la información se propaga de las entradas a las salidas. Justo aquí hay una instancia de FFNN con una capa de entrada, una capa de salida y dos capas ocultas:

Imagen conectada (haga clic en para agrandar)

La topología de un FFNN se abrevia generalmente como sigue: < # of inputs >-< # of neuronas dentro de la primera capa oculta >-< # de neuronas dentro de la segunda capa oculta >-...-< # of outputs >. La comunidad antedicha puede ser conocida como comunidad 4-3-3-1. La información es procesada por las neuronas en dos pasos, comprobados en todo el círculo por una señal de sumación y una señal de paso:

  1. Todas las entradas se multiplican por los pesos relacionados y sumado
  2. Las sumas siguientes son procesadas por la activación de la neurona, cuya producción es la salida neuronal.
읽다  Simple Breakout System de Zach

Es la activación de la neurona que proporciona no linealidad al maniquí de la comunidad neural. Sin él, no hay tal cosa como un motivo para tener capas ocultadas, y la comunidad neuronal se convierte en un maniquí auto-regresivo linear (ar). ☝ No puedo presentar ningún tipo de asistencia como codificación (junto con el código de suministro) y el servicio de solución de problemas. Por ahora, es posible que utilice este indicador siempre y cuando esté armado con los datos/el talento de la manera de utilizar el indicador estándar de TDI. Usted puede también regular los parámetros/los ajustes basados sobre todo en su opción. ☢ Por la forma en que, no hay ninguna asegura que estos indicadores funcionan por completo o sin errores. Por lo tanto, utilice a su amenaza individual; No me conformo con ninguna responsabilidad legal por daños al sistema, pérdidas monetarias e incluso falta de vida.

Imagen conectada (haga clic en para agrandar)
Haga clic para agrandar nombre: EURUSD. jpg tamaño: 84 KB

Agregar fecha: 06:24 PM | Martes, 12 de junio de 2018 | Greenwich implica tiempo (GMT)

Archivo conectado
Tipo de archivo: zip Neural-Network_Hull-MA_Jurik. 지퍼 128 KB | 64 descargas

이 게시물이 얼마나 유용했나요??

평가하려면 별표를 클릭하세요.!

평균 평점 0 / 5. 투표수: 0

현재까지 투표가 없습니다! 이 게시물을 가장 먼저 평가해 보세요..

읽다  4 sistema de comercio de la hora para los novatos y el comerciante experimentado a intentar.

이 게시물이 귀하에게 도움이 되지 못했다니 죄송합니다!

이 게시물을 개선해 보겠습니다.!

이 게시물을 개선할 수 있는 방법을 알려주세요.?



작가: 외환 위키 팀
우리는 경험이 풍부한 외환 트레이더들로 구성된 팀입니다 [2000-2023] 우리 자신의 조건에 따라 삶을 살기 위해 헌신하는 사람들. 우리의 주요 목표는 재정적 독립과 자유를 얻는 것입니다., 우리는 자립 가능한 라이프 스타일을 달성하기 위한 수단으로 독학을 추구하고 외환 시장에서 풍부한 경험을 얻었습니다..