- tháng mười 11, 2018
- Gửi bởi: Nhóm Wiki Forex
- Loại: Вики торговые системы
※ Нейронной сети ─ корпус передачи общих (HMA) и отклонение-масштабированный передачи общего (дсма) ※ ☛ использует HMA алгоритм однако это один вариант от низкого отставания к нулю отставание, после чего... сливается с следующим: ↓ ☛ Jurik фильтры/сглаживание и подгонянные сорта Ма ☛ смешанные с отклонением-масштабированный передачи общий алгоритм ☛ высший и самый большой метод (выше и в розыск) знать: наибольшее использование с томами на первичном графике индикатор ─ целесообразно для индикатора установите Off/Replace движение переходного принципа нейронных сетей: нейронное сообщество является регулируемым манекеном выходов как возможности входов. Он состоит из нескольких слоев:
- Введите слой, который состоит из ввода знаний
- скрытый слой, который состоит из обработки узлов, известных как нейроны
- выходной слой, который состоит из 1 или нескольких нейронов, чьи выходы являются результатами сообщества.
Все узлы смежных слоев взаимосвязаны. Эти соединения известны как синапсы. Каждый синапс имеет присвоенный коэффициент масштабирования, с помощью которого умножается информация, распространяемая с помощью синапса. Эти коэффициенты масштабирования называются весами (w [i] [j] [k]). В нейронной сети с опережением питания (ффнн) информация распространяется от входных данных к выходам. Прямо здесь находится экземпляр ффнн с одним входным слоем, одним выходным слоем и двумя скрытыми слоями:
Топология ффнн обычно сокращается следующим образом: <# of="" inputs="">- <# of="" neurons="" within="" the="" first="" hidden="" layer="">- <# of="" neurons="" within="" the="" second="" hidden="" layer="">-...- <# of="" outputs="">.</#> </#> </#> </#> Выше сообщество может быть известно как 4-3-3-1 сообщества. Информация обрабатывается нейронов в два этапа, соответственно доказано по всему кругу суммирования сигнала и шаг сигнала:
- Все входы умножаются на соответствующие весовые коэффициенты и суммируются
- Последующие суммы обрабатываются нейрона активации работать, чей выход нейронов выход.
Это нейрона активации работают, что предлагает нелинейность нейронных сообщества манекена. С вне оно, не будут повода иметь спрятанные слои, и нейронное сообщество превращается в линейный Auto-регрессивный (AR) манекен. ✜ Отклонение-масштабированный передачи общего (дсма) ✜ новый дсма сделанные Джоном Элерса и признакам в июле 2018 ситуации TASC Journal. Дсма является методом сглаживания знаний, который действует как экспоненциальная передача, общая с динамическим коэффициентом сглаживания. Коэффициент сглаживания механически обновлен в первую очередь на основе величины модификации значения. В пределах отклонения-масштабированного переноса общего, обычное отклонение от подразумевает выбрано для того чтобы быть мерой этой величины. Последующий индикатор предлагает существенное сглаживание информации даже при небольших изменениях стоимости, в то время как в скором времени они адаптируются к этим изменениям. Писатель объясняет, что из-за его дизайна, он имеет минимальное отставание, но готов представить ощутимое сглаживание. Тем не менее, нейронная сеть-HMA & дсма индикатор сливается с Jurik фильтры/сглаживание смешивается с нулевой ЛАГ HMA системы.
☝ Я не могу представить какой-либо помощи, как кодирование (вместе с кодом поставки) и устранение неполадок службы. ☢ Есть не гарантирует, что этот индикатор работает полностью или с ошибками. Поэтому, используйте на вашей личной опасности; Я не имею права на юридическую ответственность за системный ущерб, денежные потери и даже недостаток жизни. Окончательная замена: 8:00 четверг, 11 октября 2018 по Гринвичу подразумевается время (GMT)