Neural NetworkHMA & DSMA

0
(0)

Neural Network ─ Hull Transferring Common (HMA) & Deviation-Scaled Transferring Common (DSMA)

☛ Makes use of HMA algorithm however this one is a variation from low-lag to zero-lag
after which... fused with the next:

☛ Jurik Filters/Smoothing and customized MA varieties
☛ Mixed with Deviation-Scaled Transferring Common Algorithm
☛ Higher & Greatest Method (Higher & APB calculation)

Be aware: Greatest use with Volumes on Primary Chart indicator advisable for indicator set off/replace motion

Transient principle of Neural Networks:

The Neural community is an adjustable mannequin of outputs as capabilities of inputs. It consists of a number of layers:

  1. enter layer, which consists of enter knowledge
  2. hidden layer, which consists of processing nodes known as neurons
  3. output layer, which consists of 1 or a number of neurons, whose outputs are the community outputs.

All nodes of adjoining layers are interconnected. These connections are known as synapses. Each synapse has an assigned scaling coefficient, by which the info propagated by means of the synapse is multiplied. These scaling coefficient are known as weights (w[i][j][k]). trong một Feed-Ahead Neural Network (FFNN) the info is propagated from inputs to the outputs. Right here is an instance of FFNN with one enter layer, one output layer, and two hidden layers:

Hình ảnh được kết nối
Neural Network - HMA & DSMA 1

The topology of a FFNN is commonly abbreviated as follows: <# of inputs> - <# of neurons within the first hidden layer> - <# of neurons within the second hidden layer> -...- <# of outputs>. The above community might be known as a 4-3-3-1 community.
The info is processed by neurons in two steps, correspondingly proven throughout the circle by a summation signal and a step signal:

  1. All inputs are multiplied by the related weights and summed
  2. The ensuing sums are processed by the neuron's activation operate, whose output is the neuron output.

It's the neuron's activation operate that offers non-linearity to the neural community mannequin. With out it, there isn't a motive to have hidden layers, and the neural community turns into a linear auto-regressive (AR) mannequin.

Deviation-Scaled Transferring Common (DSMA)

ĐỌC  Sam TrendBlaster - Phiên bản miễn phí

The brand new DSMA made by John Ehlers and featured within the July 2018 situation of TASC journal.

The DSMA is a knowledge smoothing method that acts as an exponential transferring common with a dynamic smoothing coefficient. The smoothing coefficient is mechanically up to date primarily based on the magnitude of value modifications. Within the Deviation-Scaled Transferring Common, the usual deviation from the imply is chosen to be the measure of this magnitude. The ensuing indicator offers substantial smoothing of the info even when value modifications are small whereas shortly adapting to those modifications.

The writer explains that because of its design, it has minimal lag but is ready to present appreciable smoothing. Tuy nhiên, Neural Network - HMA & DSMA indicator is fused with Jurik filters/smoothing mixed with zero-lag HMA system.

Hình ảnh được kết nối (bấm vào để phóng to)
Click to Enlarge

Name: NN_DSMA.JPG
Size: 82 KB

Click to Enlarge

Name: NN-HMA-DSMA-Settings.JPG
Size: 90 KB
☝ I can't present any kind of assist like coding (together with supply code) and troubleshooting service.

☢ There are not any ensures that this indicator work completely or with out errors. Therefore, use at your personal danger; I settle for no legal responsibility for system harm, monetary losses and even lack of life.

final replace:
8:00 AM
Thursday, 11 tháng mười 2018
Greenwich Imply Time (GMT)

Connected File
File Type: zip Neural-Network_HMA-DSMA-Jurik.zip 137 KB | 25 lượt tải xuống

ĐỌC  Scalping System JALNO

Bài đăng này hữu ích như thế nào?

Bấm vào một ngôi sao để đánh giá nó!

Đánh giá trung bình 0 / 5. Số phiếu bầu: 0

Không có phiếu bầu cho đến nay! Hãy là người đầu tiên đánh giá bài viết này.

Chúng tôi xin lỗi vì bài đăng này không hữu ích cho bạn!

Hãy để chúng tôi cải thiện bài đăng này!

Hãy cho chúng tôi biết cách chúng tôi có thể cải thiện bài đăng này?



Tác giả: Nhóm Wiki Forex
Chúng tôi là một nhóm gồm các Nhà giao dịch Forex giàu kinh nghiệm [2000-2023] những người tận tâm sống cuộc sống theo cách riêng của chúng ta. Mục tiêu chính của chúng tôi là đạt được sự độc lập và tự do tài chính, và chúng tôi đã theo đuổi việc tự học và có được kinh nghiệm sâu rộng trên thị trường Forex như một phương tiện để đạt được lối sống tự bền vững.